
IOSR Journal of Engineering (IOSRJEN)

ISSN: 2250-3021 Volume 2, Issue 6 (June 2012), PP 41-49
www.iosrjen.org

ISSN: 2250-3021 www.iosrjen.org 41 | P a g e

Improving Computational efficiency of Tentative Data set

Manobendu Kesari Jena
1
, Tapaswini Nayak

2
 ,Dr.Maya Nayak

3
,

Ashok Kumar Panda
4

1(M.Tech(Scolar),OEC Engg. College ,IACSIT Member)2(Asst.Professor,Centurion University)
 3(Dean,Orissa Engg College ,BBSR) 4(Dean(ES & A),MITS Engg College,Rayagada)

ABSTRACT : - The aim of data mining is to find novel, interesting and useful patterns from data using
algorithms that will do it in a way that is more computational efficient than previous method. Current data

mining practice is very much driven by practical computational concerns. In focusing almost exclusively on

computational issues; it is easy to forget that statistics is in fact a core component. The Conventional decision

tree classifies the data whose values are known and particular, but in this paper such classifiers handle data

with tentative information. The value vagueness arises in many applications during the data collection process.

Example sources of vagueness include currency conversion(Rupees to Dollar), role of packet data transfer,

Daily weather report , protein design, Flight reservation, production company data due to fluctuation in raw

material. With vagueness, the value of a data item is often represented not by one single value, but by multiple

values forming a likelihood distribution. Rather than abstracting tentative data by statistical derivatives (such as

mean and median), we discover that the accuracy of a decision tree classifier can be much improved if the
“complete information” of a data item (taking into account the probability density function) is utilized .We

extend conventional decision tree building algorithms to handle data tuples with tentative values and make a

comparison between average based approach and distribution based approach. Since processing probability

density function’s is computationally more costly than processing single values (e.g., averages), decision tree

construction on tentative data is more CPU demanding than that for certain data. To handle this problem, we

propose a series of pruning techniques that can greatly improve edifice efficiency.

Keywords – data mining, probability density function, tentative data, decision tree classifier

I. INTRODUCTION
Classification,which is the task of assigning objects to one of several predefined categories, is a

pervasive problem that encompasses many diverse applications. Example include Detecting spam email

messages based upon the message header and content, categorizing cells as malignant or benign based upon the

results of MRI scans and classifying galaxies based upon their shapes.The classification of large datasets is an

important problem in data mining[1] .For a database with a number of records and for a set of classes such that

each record belongs to one of the given classes, the problem of classification is to decide the class to which a

given record belongs. The classification problem is also concerned with generating a description or a model for

each class from the given dataset.

Fig1:shows the attributes presented are mostly discrete

 Here we are concerned with a given type of classification called supervised classification. In supervised

classification we have a training dataset of records and for each record of this set, the classification process

attempts to generate the description of classes, and these descriptions help to classify the unknown records.

Fig2:Class label is unknown.

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 42 | P a g e

In addition to the training set, we can also have a test dataset which is used to determine the

effectiveness of a classification. There are several approaches of supervised classifications. Decision trees are

especially attractive in the data mining environment as they represent rules. Rules can also be extracted from
decision trees easily. Many algorithms, such as SLIQ,ID3[2] and C4.5[3],SPRINT have been devised for

decision tree construction. In recent years many new techniques for collecting data have resulted in an increase

in the availability of uncertain data

 While many applications lead to data which contains errors, we refer to tentative data sets as those in

which the level of vagueness can be quantified in some way. Data uncertainty arises naturally in many

applications due to various reasons. Some examples of applications which create uncertain data are as data

staleness, measurement error, and repeated measurements.

i)Data staleness: In some applications, data values are continuously changing and recorded information is

always stale. One example is currency trading. The currency exchange rate is the rate at which one currency can

be exchanged for another. It is always quoted in pairs like the EUR/USD (the Euro and the US Dollar).
Exchange rates fluctuate based on economic factors like inflation, industrial production and geopolitical

events. The whereabouts of currency trading can only be approximated by imposing an uncertainty model on its

last reported value. A typical uncertainty model requires knowledge about the fluctuating speed of

currency.wheteher its movement is restricted or unrestricted. Typically a 2D bounded probability density

function is defined over a bounded region to model such uncertainity.±

ii) Measurement Error: Data obtained from measurements by physical devices are often imprecise due to

measurement errors.As an example a tympanic thermometer measures body temperature by measuring the
temperature of the ear drum via an infrared sensor. A typical ear thermometer has a quoted calibration error of

±0.2̊ C,which is about 6.7% of the normal range of operation, noting that the human body temperature ranges

from 37̊ C (normal) and to 40 C (severe fever). Compound that with other factors such as placement

and technique , measurement error can be very high . For example it is reported in [5] that about 24% of

measurements are off by more than 0.5C̊ ,or about 17% of the operational range. Another source of error is

quantization errors introduced by the digitization process. In many applications such as the tracking of mobile

objects, the future trajectory of the objects is modeled by forecasting techniques. Small errors in current

readings can get magnified over the forecast into the distant future of the trajectory.

 This is frequently encountered in cosmological applications when one models the probabilityof

encounters with Near-Earth-Objects (NEOs). Errors in forecasting are also encountered in non-spatial

applications such as electronic commerce.Such errors can be properly handeled by assuming an appropriate
error model such as a Gaussian error distribution for random noise or a uniform error distribution for

quantization errors.

iii)Repeated measurement: The most common source of uncertainity comes from repeated measurements. For

example a patient’s body temperature could be taken multiple times during a day; an anemometer could record

wind speed once every minute; the space shuttle has a large number of heat sensors installed all over its

surface.When we inquire about a patients temperature or wind speed or temperature of a certain section of the

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 43 | P a g e

suttle,which value shall we use? or it would better to utilize all the information by considering the distribution

given by the collected data values?

 An source of vagueness comes from the limitation of the data collection process. For example, a survey
may ask a question like, “How many hours of Internet do you surf each day?”A typical respondent would not

reply with an exact precise answer. Rather, a range (e.g. “2-3 hours”) is usually replied, possibly because the

respondent is not so sure about the answer himself. In this example, the survey can restrict an answer to fall into

a few pre-set categories (such as “2-4 hours”,”4-7 hours”, etc). However, this restriction unnecessarily limits the

respondents’ choices and adds noise to the data.

 From the above examples, we see that in many applications, information cannot be ideally represented

by point data. More often, a value is best captured by a range possibly with a probability density function.Our

concept of uncertainty refers to such ranges of values. Again, our goal is to investigate how decision trees are

built over uncertain (range) data. Our contributions include:

1) A basic algorithm for constructing decision trees out of uncertain datasets.2) A study comparing the

classification accuracy achieved by the Averaging approach and the Distribution-based approach.

II. RELATED WORK
In recent years, uncertain data has become ubiquitous because of new technologies for collecting data

which can only measure and collect the data in an imprecise way. Furthermore, many technologies such as

privacy-preserving data mining create data which is inherently tentative in nature. As a result there is a need for

tools and techniques for mining and managing uncertain data. Data vagueness has been broadly classified as

existential uncertainty and value uncertainty. Existential uncertainty appears when it is uncertain whether an
object or a data tuple exists. For example, a data tuple in a relational database could be associated with a

probability that represents the confidence of its presence [5].“Probabilistic databases” have been applied to

semi-structured data and XML[6],[7]. Value uncertainty, on the other hand,appears when a tuple is known to

exist, but its values are not known precisely. A data item with value uncertainty is usually represented by a pdf

over a finite and bounded region of possible values[8], [9]. One well-studied topic on value uncertainty is

“imprecise queries processing”. The answer to such a query is associated with a probabilistic guarantee on its

correctness. For example, indexing solutions for range queries on uncertain data[10], solutions for aggregate

queries[11] such as nearest neighbour queries, and solutions for imprecise location-dependent queries[8] have

been proposed.

 There has been a growing interest in uncertain data mining.In [9], the well-known k-means clustering

algorithm is extended to the UK-means algorithm for clustering uncertain data. As we have explained, data
uncertainty is usually captured by pdf’s, which are generally represented by sets of sample values. Mining

uncertain data is therefore computationally costly due to information explosion (sets of samples vs. single

values). To improve the performance of UK-means, pruning techniques have been proposed. Examples include

min-maxdist pruning[12] and CK-means[13]. Apart from studies in partition-based uncertain data clustering,

other directions in uncertain data mining include density-based clustering(e.g.,FDBSCAN[14]), frequent

itemsetmining[15] and density based classification[16]. Density-based classification requires that the joint

probability distribution of the data attributesbe known. In [16], each data point is given an error model.Upon

testing, each test tuple is a point-valued data. These are very different from our data model, as we do not require

the knowledge of the joint probability distribution of the data attributes. Each attribute is handled independently

and may have its own error model. Further, the test tuples, like the training tuples, may contain uncertainty in

our model.
 Decision tree classification on uncertain data has been addressed for decades in the form of missing

values[2], [3].Missing values appear when some attribute values are not available during data collection or due

to data entry errors.Solutions include approximating missing values with the majority value or inferring the

missing value (either by exact or probabilistic values) using a classifier on the attribute (e.g.,ordered attribute

tree[17] and probabilistic attribute tree[18]).In C4.5[3] and probabilistic decision trees[19], missing values in

training data are handled by using fractional tuples. During testing, each missing value is replaced by multiple

values with probabilities based on the training tuples, thus allowing probabilistic classification results. In this

work, we adopt the technique of fractional tuple for splitting tuples into subsets when the domain of its pdf

spans across the split point.We have also adopted the idea of probabilistic classification results. We do not

directly address the problem of handling missing values. Rather, we tackle the problem of handling data

uncertainty in a more general form. Our techniques are general enough for the existing missing-value handling

methods to be encapsulated naturally into our framework. Based on the previously described approaches, a
simple method of “filling in” the missing values could be adopted to handle the missing values, taking

advantage of the capability of handling arbitrary pdf’s in our approach. We can take the average of the pdf of the

attribute in question over the tuples where the value is present. The result is a pdf, which can be used as a

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 44 | P a g e

“guess” distribution of the attribute’s value in the missing tuples. Then, we can proceed with decision tree

construction.

 Building a decision tree on tuples with numerical, point valued data is computationally demanding
[20]. A numerical attribute usually has a possibly infinite domain of real or integral numbers, inducing a large

search space for the best “split point”. Given a set of n training tuples with a numerical. attribute, there are as

many as n - 1 binary split points or ways to partition the set of tuples into two non-empty groups. Finding the

best split point is thus computationally expensive. To improve efficiency, many techniques have been proposed

to reduce the number of candidate split points[21],[20], [22]. These techniques utilise the convex property of

well-known evaluation functions like Information Gain[2] and Gini Index[23]. For the evaluation function TSE

(Training Set Error), which is convex but not strictly convex, one only needs to consider the “alternation points”

as candidate split points.[24] An alternation point is a point at which the ranking of the classes (according to

frequency) changes.

III. PROBLEM DEFINITION
This section formally defines the problem of decision-tree classification on uncertain data. We first

discuss traditional decision trees briefly. Then, we discuss how data tuples with uncertainty are handled.

A. Traditional Decision Trees
In our model, a dataset consists of d training tuples,{t1,t2,...., td},and k numerical (real-valued) feature

attributes,A1,……Ak. The domain of attribute Aj is dom(Aj).Each tuple ti is associated with a feature vector Vi

=(vi,1, vi,2, .,.,., . vi,k) and a class label ci, where vi,j Є dom(Aj) and ci Є C, the set of all class labels. The

classification problem is to construct a model M that maps each feature vector (vx,1,….. vx,k) to a probability

distribution Px on C such that given a test tuple t0 = (v0,1,…..,v0, k, c0), P0 =M(v0,1,….,v0,k) predicts the class label

c0 with high accuracy.We say that P0 predicts c0 if c0 = arg maxcЄC P0(c).In this paper we study binary decision

trees with tests on numerical attributes. Each internal node n of a decision tree is associated with an attribute Ajn

and a split point zn Єdom(Ajn), giving a binary test v0,jn ≤ zn. An internal node has exactly 2 children, which are

labelled “left” and “right”, respectively. Each leaf node m in the decision tree is associated with a discrete

probability distribut1ion Pm over C. For each c Є C, Pm(c) gives a probability reflecting how likely a tuple

assigned to leaf node m would have a class label of c.

 To determine the class label of a given test tuple t0 =(v0,1, …… , v0,k, ?), we traverse the tree starting

from the root node until a leaf node is reached. When we visit an internal node n, we execute the test v0,jn ≤ zn

and proceed to the left child or the right child accordingly. Eventually, we reach a leaf node m. The probability

distribution Pm associated with m gives the probabilities that t0 belongs to each class label c Є C. For a single

result, we return the class label c Є C that maximises Pm(c).

t v 0 1 2 3 4 5 6 7 8 C

t0 V0 3.2 4.3 7.8 9.1 1.4 4.1 2.8 4.0 6.6 C1

t1 V1 1.2 2.1 3.7 4.1 1.8 2.3 3.1. 8.1 9.4 C2

t2 V2 4.4 2.3 5.5 7.8 8.8 9.9 9.3 4.5 6.6 C3

t v 0 1 2 3 4 5 6 7 8 C

t0 V0 3.2 4.3 7.8 9.1 1.4 4.1 2.8 4.0 6.6 ?

B. Handling Uncertainty Information

Under our uncertainty model, a feature value is represented not by a single value, vi,j , but by a pdf, fi,j .

For practical reasons, we assume that fi,j is non-zero only within a bounded interval [a i,j ,bi,j].A pdf fi,j could be

programmed analytically if it can be specified in closed form. More typically, it would beimplemented
numerically by storing a set of s sample points x Є [a i,j , b i,j] with the associated value fi,j(x), effectively

approximating fi,j by a discrete distribution with s possible values. We adopt this numerical approach for the rest

this paper. With this representation, the amount of information available is exploded by a factor of s. Hopefully,

the richer information allows us to build a better classification model.On the down side, processing large

numbers of sample point is much more costly. In this paper we show that accuracy can be improved by

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 45 | P a g e

considering uncertainty information. We also propose pruning strategies that can greatly reduce the

computational effort.

 A decision tree under our uncertainty model resembles that of the point-data model. The difference lies in

the way the tree is employed to classify unseen test tuples. Similar to thetraining tuples, a test tuple t0 contains

uncertain attributes.Its feature vector is thus a vector of pdf’s (f 0,1,…. , f0,k).A classification model is thus a

function M that maps such a feature vector to a probability distribution P over C. The probabilities for P are

calculated as follows. During these calculations, we associate each intermediate tuple tx with a weight wx Є [0,

1]. Further, we recursively define the quantity ϕn(c;tx,wx), which can be interpreted as the conditional probability

that tx has class label c, when the sub tree rooted at n is used as an uncertain decision tree to classify tuple tx with

weight wx.

 For each internal node n (including the root node), to determine ϕn(c; tx,wx), we first check the attribute Ajn

andsplit point zn of node n. Since the pdf of tx under attribute Ajn spans the interval

zn [ax,jn, bx,jn], we compute the “left” probability pL = ∫zn fx,jn(t)dt(or pL = 0 in case zn< ax,jn) and

 ax,jnthe “right” probability pR = 1 - pL. Then, we split tx into 2 fractional tuples tL and tR. (The concept

of fractional tuples is also used in C4.5[3] for handling missing values.) Tuples tL and tR inherit the class label of

tx as well as the pdf’s of tx for all attributes except Ajn. Tuple tL is assigned a weight of wL = wx _ pL and its pdf

for Ajn is given by

 Tuple tR is assigned a weight and pdf analogously. We define ϕn(c; tx,wx) = LϕnL(c,tL,wL)+pR.ϕnR(c; tR,wR)

where nL and nR are the left child and the right child of node n,respectively.

For every leaf node m, recall that it is associated with a probability distribution Pm over C. We define ϕm(c;

tx,wx) =wx .Pm(c). Finally, for each class c, let P(c) = _r(c; t0; 1:0),where r is the root node of the decision tree.
Obtained this way, each probability P(c) indicates how likely it is that

the test tuple t0 has class label c. These computations are illustrated in Figure 1, which shows a test

tuple t0 with one feature whose pdf has the domain [-2.5, 2]. It has a weight of 1.0 and is first tested against the

root node of the decision tree. Based on the split point -1, we find that PL = 0.3 and PR = 0.7. So, t0 is split into

two tuples tL and tR with weights wL = 0.3 and wR = 0.7. The tuple tL inherits the pdf from t0 over the sub-domain

[-2.5,-1], normalised by multiplying by a factor of 1/wL. Tuple tR inherits the pdf from t0 in a similar fashion.

These tuples are then recursively tested down the tree until the leaf nodes are reached. The weight distributed in

such a way down to each leaf node is then multiplied with the probability of each class label at that leaf node.

These are finally summed up to give the probability distribution (over the class labels) for t0, giving P(A) = 0.59;

P(B) = 0.41.

 If a single class label is desired as the result, we select the class label with the highest probability as the

final answer. In the example in Figure 1, the test tuple is thus classified as class “A” when a single result is

desired.

 The most challenging task is to construct a decision tree based on tuples with uncertain values. It

involves finding a good testing attribute Ajn and a good split point zn for each internal node n, as well as an

appropriate probability distribution Pm over C for each leaf node m. We describe algorithms for constructing

such trees in the next section.

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 46 | P a g e

IV. ALGORITHMS
 In this section, we discuss two approaches for handling uncertain data. The first approach, called

“Averaging”, transforms an uncertain dataset to a point-valued one by replacing each pdf with its mean value.

More specifically, for each tuple ti and attribute Aj , we take the mean value
1

as its representative value. The feature vector of ti is thus transformed to (v i,1,……, v i,k). A decision tree can

then be built by applying a traditional tree construction algorithm.

 To exploit the full information carried by the pdf’s, our second approach, called “Distribution-

based”, considers all the sample points that constitute each pdf. The challenge here is that a training tuple can

now “pass” a test at a tree node probabilistically when its pdf properly contains the split point of the test. Also, a

slight change of the split point modifies that probability, potentially altering the tree structure. We present

details of the tree-construction algorithms under the two approaches in the following subsections.

A. Averaging

A straight-forward way to deal with the uncertain information is to replace each pdf with its expected

value, thus effectively converting the data tuples to point-valued tuples. This reduces the problem back to that

for point-valued data,and hence traditional decision tree algorithms such as ID3 and C4.5[3] can be reused. We

call this approach AVG (for Averaging). We use an algorithm based on C4.5. Here is a brief description.

 AVG is a greedy algorithm that builds a tree top-down.When processing a node, we examine a set of

tuples S. The algorithm starts with the root node and with S being the set of all training tuples. At each node n,

we first check if all the tuples in S have the same class label c. If so, we make n a leaf node and set

 Otherwise, we select an attribute Ajn and a split point zn and divide the
tuples into two subsets: “left” and “right”. All tuples with vi,j n ≤ zn are put in the “left” subset L; the rest go to

the “right” subset R. If either L or R is empty (even after exhausting all possible choices of Ajn and zn), it is

impossible to use the available attributes to further discern the tuples in S. In that case, we make n a leaf node.

Moreover, the population of the tuples in S for each class label induces the probability distribution Pn. In

particular, for each class label cЄC, we assign to Pn(c) the fraction of tuples in S that are labelled c. If neither L
nor R is empty, we make n an internal node and create child nodes for it. We recursively invoke the algorithm

on the “left” child and the “right” child, passing to them the sets L and R, respectively.

To build a good decision tree, the choice of Ajn and zn is crucial. At this point, we may assume that this

selection is performed by a blackbox algorithm BestSplit, which takes a set of tuples as parameter, and returns

the best choice of attribute and split point for those tuples. We will examine this blackbox in details. Typically,

BestSplit is designed to select the attribute and split point that minimises the degree of dispersion. The degree of

dispersion can be measured in many ways,such as entropy (from information theory) or Gini index[30].The

choice of dispersion function affects the structure of the resulting decision tree.2 In this paper we assume that

entropy is used as the measure since it is predominantly used for building decision trees.The minimisation is

taken over the set of all possible attributes Aj (j = 1,……,k), considering all possible split points in dom(Aj).

Given a set S = {t1,……,tm} of m tuples with point values, there are only m-1 ways to partition.

Probability distributions

Tuple Class Mean -10 -1.0 0.0 +1.0 +10

1 A +2.0 8/11 3/11

2 A -2.0 1/9 8/9

3 A +2.0 5/8 1/8 2/8

4 B -2.0 5/19 1/19 13/19

5 B +2.0 1/35 30/35 4/35

6 B -2.0 3/11 8/11

TABLE 1

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 47 | P a g e

into two non-empty L and R sets. For each attribute Aj , the split points to consider are given by the set

of values of the tuples under attribute Aj , i.e., {v 1,j,…., vm,j}. Among these values, all but the largest one give

valid split points. (The largest one gives an empty R set, so invalid.) For each of the (m-1)k combinations of

attributes (Aj) and split points (z), we divide the set S into the “left” and “right” subsets L and R. We then

compute the entropy for each such combination:

where Pc/X is the fraction of tuples in X that are labeled c. We take the pair of attribute Aj* and split point z* that
minimises H(z,Aj) and assign to node n the attribute Aj*with split point z*.3

 Let us illustrate this classification algorithm using the example tuples shown in Table I. This set

consists of 6 tuples of 2 class labels “A” and “B”. Each tuple has only 1 attribute,whose (discrete) probability

distribution is shown under the column “probability distribution”. For instance, tuple 3 has class label “A” and

its attribute takes the values of -1, +1, +10 with probabilities 5/8, 1/8, 2/8 respectively. The column “mean”

shows the expected value of the attribute. For example,tuple 3 has an expected value of +2.0. With Averaging,

there is only 1 way to partition the set: the even numbered tuples go to L and the odd-numbered tuples go to R.
The tuples in each subset have the same mean attribute value, and hence cannot be discerned further. The

resulting decision tree is shown in Figure 2(a). Since the left subset has 2 tuples of class B and 1 tuple of class

A, the left leaf node L has the probability distribution PL(A) = 1/3 and PL(B) = 2/3 over the class labels. The

probability distribution of class labels in the right leaf node R is determined analogously. Now, if we use the 6

tuples in Table I as test tuples4 and use this decision tree to classify them, we would classify tuples 2, 4, 6 as

class “B”(the most likely class label in L) and hence misclassify tuple 2. We would classify tuples 1, 3, 5 as

class “A”, thus getting the class label of 5 wrong. The accuracy is 2/3.

B. Distribution-based
For uncertain data, we adopt the same decision tree building framework as described above for

handling point data. After an attribute Ajn and a split point zn has been chosen for a node n, we have to split the

set of tuples S into two subsets L and R. The major difference from the point-data case lies in the way the set S

is split. Recall that the pdf of a tuple ti Є S under attribute Ajn spans the interval [ai,jn, bi,jn]. If bi,jn ≤ zn, the pdf of

ti lies completely on the left of the split point and thus ti is assigned to L. Similarly, we assign ti to R if zn < ai,jn.

If the pdf properly contains the split point, i.e.,ai,jn ≤ zn < bi,jn, we split ti into two fractional tuples TL and tR in

the same way as described in Section III-B and add them to L and R, respectively. We call this algorithm UDT

(for Uncertain Decision Tree).

Again, the key to building a good decision tree is a good choice of an attribute Ajn and a split point zn

for each node n. With uncertain data, however, the number of choices of a split point given an attribute is not

limited to m - 1 point values.This is because a tuple ti’s pdf spans a continuous range [a i,j , bi,j]. Moving the split

point from a i,j to bi,j continuously changes the probability (and likewise for pR). This

changes the fractional tuples tL and tR, and thus changes the resulting tree. If we model a pdf by s sample values,

we are approximating the pdf by a discrete distributionof s points. In this case, as the split point moves from one

end-point ai,j to another end-point bi,j of the interval, the probability pL changes in s steps. With m tuples, there

arein total ms sample points. So, there are at most ms - 1 possible split points to consider. Considering all k

attributes,to determine the best (attribute, split-point) pair thus require us to examine k(ms - 1) combinations of

attributes and split points. Comparing to AVG, UDT is s time more expensive.

Note that splitting a tuple into two fractional tuples involves a calculation of the probability pL, which requires

an integration.We remark that by storing the pdf in the form of a cumulative distribution, the integration can be

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 48 | P a g e

done by simply subtracting two cumulative probabilities.

 Let us re-examine the example tuples in Table I to see how the distribution-based algorithm can

improve classification accuracy. By taking into account the probability distribution,UDT builds the tree shown

in Figure 3 before pre-pruning and post-pruning are applied. This tree is much more elaborate than the tree
shown in Figure 2(a), because we are using more information and hence there are more choices of split

points.The tree in Figure 3 turns out to have a 100% classification accuracy! After post-pruning, we get the tree

in Figure 2(b).Now, let us use the 6 tuples in Table I as testing tuples4 to test the tree in Figure 2(b). For

instance, the classification result of tuple 3 gives P(A) = 5/8 x 0.80 + 3/8 x 0.212 = 0.5795 and P(B) = 5/8 x 0.20

+ 3/8 x 0.788 = 0.4205. Since the probability for “A” is higher, we conclude that tuple 3 belongs to class “A”.

All the other tuples are handled similarly, using the label of the highest probability as the final classification

result. It turns out that all 6 tuples are classified correctly.This hand-crafted example thus illustrates that by

considering probability distributions rather than just expected values, we can potentially build a more accurate

decision tree.

V. CONCLUSIONS
We have extended the model of decision-tree classification to accommodate data tuples having

numerical attributes with vagueness described by arbitrary pdf’s. We have modified classical decision tree

building algorithms (based on the framework of C4.5[3]) to build decision trees for classifying such data. We

have found empirically that when suitable pdf’s are used, exploiting data vagueness leads to decision trees with

remarkably higher accuracies. We therefore advocate that data be collected and stored with the pdf information

intact. Performance is an issue, though, because of the increased amount of information to be processed, as well
as the more complicated entropy computations involved. Therefore, we have devised a series of pruning

techniques to improve tree construction efficiency. Their execution times are of an order of magnitude

comparable to classical algorithms.Although our novel techniques are primarily designed to handle uncertain

data, they are also useful for building decision trees using classical algorithms when there are tremendous

amounts of data tuples.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N. Swami, “Database mining: A performance perspective,” IEEE Trans. Knowl. Data Eng., vol.

5, no. 6,pp. 914–925, 1993.

[2] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,no. 1, pp. 81–106, 1986.

[3] C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993,ISBN 1-55860-238-0.

[4] G. L. Freed and J. K. Fraley, “25% “error rate” in ear temperature sensing device,” Pediatrics, vol. 87, no. 3, pp. 414–415, Mar.

1991.

[5] N. N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic databases,” The VLDB Journal, vol. 16, no. 4, pp. 523–544,

2007.

[6] E. Hung, L. Getoor, and V. S. Subrahmanian, “Probabilistic interval XML,” ACM Transactions on Computational Logic (TOCL),

vol. 8,no. 4, 2007.

[7] A. Nierman and H. V. Jagadish, “ProTDB: Probabilistic data in XML,”in VLDB. Hong Kong, China: Morgan Kaufmann, 20-23

Aug. 2002,pp. 646–657.

[8] J. Chen and R. Cheng, “Efficient evaluation of imprecise location dependent queries,” in ICDE. Istanbul, Turkey: IEEE, 15 -20 Apr.

2007,pp. 586–595.

[9] M. Chau, R. Cheng, B. Kao, and J. Ng, “Uncertain data mining: An example in clustering location data,” in PAKDD, ser. Lecture

Notes in Computer Science, vol. 3918. Singapore: Springer, 9–12 Apr. 2006, pp. 199–204.

[10] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient indexing methods for probabilistic threshold queries over

uncertain data,” in VLDB. Toronto, Canada: Morgan Kaufmann, 31 Aug.–3 Sept.2004, pp. 876–887.

[11] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying imprecise data in moving object environments,” IEEE Trans. Knowl.

Data Eng.,vol. 16, no. 9, pp. 1112–1127, 2004.

[12] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and K. Y. Yip,“Efficient clustering of uncertain data,” in ICDM. Hong Kong,

China:IEEE Computer Society, 18–22 Dec. 2006, pp. 436–445.

[13] S. D. Lee, B. Kao, and R. Cheng, “Reducing UK-means to K-means,”in The 1st Workshop on Data Mining of Uncertain Data

(DUNE), in conjunction with the 7th IEEE International Conference on Data Mining (ICDM), Omaha, NE, USA, 28 Oct. 2007.

[14] H.-P. Kriegel and M. Pfeifle, “Density-based clustering of uncertain data,” in KDD. Chicago, Illinois, USA: ACM, 21–24 Aug.

2005, pp.672–677.

[15] C. K. Chui, B. Kao, and E. Hung, “Mining frequent itemsets from uncertain data,” in PAKDD, ser. Lecture Notes in Computer

Science,vol. 4426. Nanjing, China: Springer, 22-25 May 2007, pp. 47–58.

Improving Computational efficiency of Tentative Data set

ISSN: 2250-3021 www.iosrjen.org 49 | P a g e

[16] C. C. Aggarwal, “On density based transforms for uncertain data mining,” in ICDE. Istanbul, Turkey: IEEE, 15 -20 Apr. 2007, pp.

866–875.

[17] O. O. Lobo and M. Numao, “Ordered estimation of missing values,” in PAKDD, ser. Lecture Notes in Computer Science, vol.

1574. Beijing,China: Springer, 26-28 Apr. 1999, pp. 499–503.

[18] L. Hawarah, A. Simonet, and M. Simonet, “A probabilistic approach to classify incomplete objects using decision trees,” in DEXA,

ser. Lecture Notes in Computer Science, vol. 3180. Zaragoza, Spain: Springer, 30 Aug.-3 Sep. 2004, pp. 549–558.

[19] J. R. Quinlan, “Learning logical definitions from relations,” Machine Learning, vol. 5, pp. 239–266, 1990.

 [20] T. Elomaa and J. Rousu, “General and efficient multisplitting of numerical attributes,” Machine Learning, vol. 36, no. 3, pp. 201–

244, 1999.

[21] U. M. Fayyad and K. B. Irani, “On the handling of continuous-valued attributes in decision tree generation,” Machine Learning, vol.

8, pp.87–102, 1992.

[22] T. Elomaa and J. Rousu, “Efficient multisplitting revisited: Optimapreserving elimination of partition candidates,” Data Mining and

Knowledge Discovery, vol. 8, no. 2, pp. 97–126, 2004.

[23] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Wadsworth, 1984.

[24] T. Elomaa and J. Rousu, “Necessary and sufficient pre-processing in numerical range discretization,” Knowledge and Information

Systems, vol. 5, no. 2, pp. 162–182, 2003.

